Incompressible Non-Newtonian Fluid Flows

نویسنده

  • Quoc-Hung Nguyen
چکیده

A non-Newtonian fluid is a fluid whose flow properties differ in many ways from those of Newtonian fluids. Most commonly the viscosity of non-Newtonian fluids is not independent of shear rate or shear rate history. In practice, many fluid materials exhibits non-Newtonian fluid behavior such as: salt solutions, molten, ketchup, custard, toothpaste, starch suspensions, paint, blood, and shampoo etc. In a Newtonian fluid, the relation between the shear stress and the shear rate is linear, passing through the origin, the constant of proportionality being the coefficient of viscosity. In a non-Newtonian fluid, the relation between the shear stress and the shear rate is different, and can even be time-dependent. Therefore a constant coefficient of viscosity cannot be defined. In the previous parts of this book, the mechanics of Newtonian fluid have been mentioned. In this chapter, the common rheological models of non-Newtonian fluids are introduced and several approaches concerned with non-Newtonian fluid flows are considered. In addition, the solution of common non-Newtonian fluid flows in a circular pipe, annular and rectangular duct are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Newtonian and Non-Newtonian Blood Flow Simulation after Arterial Stenosis- Steady State and Pulsatile Approaches

Arterial stenosis, for example Atherosclerosis, is one of the most serious forms of arterial disease in the formation of which hemodynamic factors play a significant role. In the present study, a 3-D rigid carotid artery with axisymmetric stenosis with 75% reduction in cross-sectional area is considered. Laminar blood flow is assumed to have both Newtonian and non-Newtonian behavior (generalize...

متن کامل

On the Numerical Simulation of Free Surface Flow: Modeling Water and Ice PREPRINT

The modeling of various types of free surface flow is presented, ranging from incompressible Newtonian flows, to non-Newtonian viscous ice flows. A numerical method for the simulation of such flows that relies on an Eulerian approach based on the volume-of-fluid formulation is advocated. A

متن کامل

Traveling Waves of Some Symmetric Planar Flows of Non-Newtonian Fluids

We present some variants of Burgers-type equations for incompressible and isothermal planar flow of viscous non-Newtonian fluids based on the Cross, the Carreau and the power-law rheology models, and on a symmetry assumption on the flow. We numerically solve the associated traveling wave equations by using industrial data and in order to validate the models we prove existence and uniqueness of ...

متن کامل

External and Internal Incompressible Viscous Flows Computation using Taylor Series Expansion and Least Square based Lattice Boltzmann Method

The lattice Boltzmann method (LBM) has recently become an alternative and promising computational fluid dynamics approach for simulating complex fluid flows. Despite its enormous success in many practical applications, the standard LBM is restricted to the lattice uniformity in the physical space. This is the main drawback of the standard LBM for flow problems with complex geometry. Several app...

متن کامل

Numerical Simulation and Analysis of Incompressible Newtonian Fluid Flows using FreeFem++

We present the analysis and numerical simulations of incompressible Newtonian fluids for unsteady flows in a straight pipe and in deformed pipe with concave and convex deformation of the upper wall. An approach of modeling of blood flow is considered with an unsteady Navier-Stokes problem with a pulsatile flow for which we can establish analogy with existing cardio vascular systems. We apply th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012